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We study electronic transport through an Aharonov-Bohm interferometer with single-level quantum dots
embedded in the two arms. The full counting statistics in the shot-noise regime is calculated to first order in the
tunnel-coupling strength. The interplay of interference and charging energy in the dots leads to a dynamical
channel blockade that is tunable by the magnetic flux penetrating the Aharonov-Bohm ring. We find super-
Poissonian behavior with diverging second and higher cumulants when the Aharonov-Bohm flux approaches an
integer multiple of the flux quantum.
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I. INTRODUCTION

The study of full counting statistics �FCS� of charge trans-
port through mesoscopic systems has become a well-
established field. A number of theoretical approaches for cal-
culating the cumulant generating function have been
developed,1–6 extended to interacting systems,7–10 and
memory effects have been included.11–13 Experimentally, it
has become possible to count single electrons in real time as
they pass through a system of quantum dots.14–16 Despite the
detector performing a projective measurement, interference
has been observed in specially designed systems.17 Apart
from the conceptionally straightforward idea of counting in-
dividual electrons there have been numerous proposals for
counting statistics detectors, involving qubits and supercon-
ducting systems.18–22

Useful references to compare transport statistics with are
Poissonian processes, which describe uncorrelated events of
charge transfer. Correlations between the transport events
change the transport statistics. For fermionic systems, corre-
lations typically lead to a reduction in the current noise.
However, there are also various scenarios in which the noise
is increased. A prominent example that exhibits super-
Poissonian noise is electron bunching, in which periods of
high and low �or zero� current alternate. Bunching behavior
has been discussed in complex geometries such as beam
splitters23 and serial double quantum dots �DQDs� �Refs. 24
and 25� and triple26 quantum dots. It may be understood as a
consequence of a system’s bistability.27,28 A further example
for a bistable system is a quantum shuttle, which exhibits
enhanced noise at the transition from the tunneling to the
shuttling regime.29

Super-Poissonian transport behavior can already be found
in a single quantum dot, e.g., when lifting of the spin degen-
eracy of the level results in different tunneling rates for the
two spin states.30 A similar effect was measured in a quantum
dot with two states coupling differently to the leads either
due to their differing spatial extension16 or due to spin-
dependent tunneling to ferromagnetic leads.31,32 Transport
through a single level can also exhibit bunching if a second
level in its vicinity interrupts transport by means of Coulomb
interaction.33–36 In a similar way, driven transitions between
two levels may give rise to enhanced noise.37

Also the counting statistics of transport through parallel
double quantum dots may exhibit super-Poissonian behavior.

Enhanced noise of the co-tunneling current has been found in
the presence of ferromagnetic leads.38 In DQDs with normal
leads enhanced noise was predicted for spinless electrons
with36,39,40 and without41 interdot Coulomb interaction and
for spinful electrons in double dots with an interdot tunnel
coupling that leads to a splitting between symmetric and an-
tisymmetric one-electron states in the double dot.42

In this paper we study a parallel DQD as shown in Fig. 1.
The dots are weakly coupled to two leads, operated in the
shot-noise regime, with an Aharonov-Bohm flux � enclosed
by the two paths. We assume the two dots to be sufficiently
separated such that there is no direct tunneling and no inter-
dot charging energy. On the other hand, we assume a strong
Coulomb interaction within each dot. The system can, there-
fore, accommodate at most two electrons. The spin degree of
freedom will turn out to be a vital ingredient since it neces-
sitates the description of the doubly-occupied states by sin-
glet and triplets. These will turn out to be critical for the
decomposition of the system’s Liouville space into two dis-
joint parts, resulting in diverging cumulants.

The possibility to entangle the spins in the dots is used in
the context of quantum information processing.43,44 It was
recently pointed out45,46 that in nonequilibrium situations an
imbalance between spin singlet and triplet states in the DQD
can be generated, based on a scheme that is similar to coher-
ent population trapping.47,48 In contrast to double dots with
direct tunneling between the dots, the symmetric and anti-
symmetric one-electron states remain energetically degener-
ate for weak tunnel coupling to the leads. The same holds
true for the singlet and triplet two-electron states. The imbal-
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FIG. 1. The double-dot Aharonov-Bohm interferometer consists
of two quantum dots �u and d� connected to two leads in parallel.
The paths through the dots enclose a magnetic flux �, giving rise to
Aharonov-Bohm interference.
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ance between singlet and triplet is, therefore, a genuine non-
equilibrium effect that relies on the interplay between coher-
ent tunnel coupling and Coulomb interaction.45,46

In the Aharonov-Bohm interferometer discussed in this
paper, the singlet-triplet imbalance depends on the
Aharonov-Bohm phase, which can be tuned by the magnetic
flux enclosed by the interferometer arms. Its origin is related
to the fact that the source and drain electrons only couple to
certain linear combinations of the upper and lower dot levels.
Most dramatic effects are expected for Aharonov-Bohm
fluxes that are close to integer multiples of the flux quantum.
In this case, as we will discuss in more detail below, the
singlet and triplet states belong to two different subspaces of
the double dot’s Hilbert space. These subspaces are nearly
disconnected from each other and are described by different
transport characteristics. As a consequence, we will find
bunching behavior that leads to not only an enhancement but
even a divergence of the second and higher cumulants as a
function of the Aharonov-Bohm phase.

The paper is structured as follows: In Sec. II we specify
the system model. Section III describes how to calculate the
full counting statistics. The results are discussed in Sec. IV,
where we illustrate the mechanism of super-Poissonian sta-
tistics and discuss several limiting cases. In Sec. V we dem-
onstrate the origin of the effect by comparing to a spinless
model. Finally, we conclude in Sec. VI.

II. SYSTEM

The double-dot interferometer shown in Fig. 1 is de-
scribed by the Hamiltonian

H = Hu + Hd + HL + HR + HT. �1�

The quantum dots, Hi=���ic�i
† c�i+Un↑in↓i for i=u ,d, are

described as Anderson impurities with spin-degenerate elec-
tronic levels �i and charging energy U for double occupation.
Throughout this paper we are interested in the regime of
strong Coulomb interaction �U greater than all other ener-
gies� so that at most single occupation of each dot is allowed.
Furthermore, we concentrate on the situation when both
quantum-dot levels are tuned close to each other. We define
the average level energy as �= ��u+�d� /2. Each of the leads
is described as a reservoir of noninteracting fermions Hr
=�k���rk�ark�

† ark� with indices for lead r� �L ,R�, momen-
tum k, and spin �. The tunneling Hamiltonian HT=�r,iHT,ri
consists of parts for tunneling between each dot i and each
lead r,

HT,ri = �
k,�

triark�
† c�i + H.c., �2�

with the flux dependence included in the phases of the tun-
neling amplitudes tL,d= �tL�ei�/4, tL,u= �tL�e−i�/4, tR,u= �tR�ei�/4,
and tR,d= �tR�e−i�/4, according to Fig. 1. The phase � is related
to the magnetic flux � through the ring as �=2�� /�0,
where �0=h /e is the flux quantum. The tunneling rate
through interface r is quantified by 	r /
=2��tr�2�r /
. For
simplicity, we assume the density of states �r and the tunnel-
ing amplitudes tr to be independent of energy, which implies
constant tunneling rates.

In addition to strong on-site Coulomb repulsion, we as-
sume no interdot interaction so that the entire system can be
occupied by at most two electrons. The probabilities to find
the system empty and singly occupied are p0 and p1, respec-
tively. Charging the empty system with an electron of spin �
from the left lead results in the state �ei�/4cu�

†

+e−i�/4cd�
† � /�2�0�= �ei�/4�� ,0�+e−i�/4�0,��� /�2	�+ �L. This

state is not fully described by the probability of single occu-
pation p1= pu+ pd. It rather needs to be further specified by
off-diagonal elements of the density matrix p�

= 
���
��,
where  and � label the nine dot states
�0� , �↑ ,0� , �↓ ,0� , �0,↑� , �0,↓� , �↑ ,↑� , �↓ ,↓� , �↑ ,↓� , �↓ ,↑�. We
summarize them as an isospin in the two-dimensional
Hilbert-space of the two dot levels I�= �I�,x , I�,y , I�,z�= �pd

u

+ pu
d , i�pd

u− pu
d� , pu− pd� /2. In this basis the state reached by

tunneling in from the left lead is isospin polarized along nL
= �cos � /2,sin � /2,0�. The right lead is correspondingly
isospin polarized along nR= �cos � /2,−sin � /2,0�.

Due to strong Coulomb interaction on the dots double
occupation of the system is allowed only if one electron is
found in each dot. This means that by sequential filling from
the source lead only the singlet state �S�= ��↑ ,↓�− �↓ ,↑�� /�2
is accessible. The three triplets �T+�= �↑ ,↑�, �T−�= �↓ ,↓�, and
�T0�= ��↑ ,↓�+ �↓ ,↑�� /�2 can be accessed only indirectly as
we will see later. Spin symmetry of the Hamiltonian requires
all triplets to be occupied with equal probability pT+

= pT−
= pT0

= pT in the stationary limit. While in principle the den-
sity matrix may contain 9�9=81 elements, this number re-
duces to the following seven: p0 , p1 , pS , pT and three isospin
components I �spin symmetry requires the occupation of all
triplets to be equal�.

III. MASTER EQUATION AND FCS

The time evolution of the system’s density matrix can be
described by a number-resolved generalized master equation

d

dt
p�

�N,t� + i�� − ���p�
�N,t�

= �
N�=−�

� 
0

t

dt� �
�,��

W���
��N − N�,t − t��p��

��N�,t�� , �3�

where p�
�N , t� is the component of the density matrix under

the condition that N electrons have passed the system after
time t. In general, the energy difference ��−��� appears in
the presence of off-diagonal matrix elements. It, however,
vanishes for symmetric dot level energies, �u=�d.

The kernel of this equation can be obtained using a dia-
grammatic real-time technique formulated on the Keldysh
contour. It allows for a perturbative expansion in the cou-
pling strength, which we abort in lowest order 	 to describe
the weak-tunneling limit. For a detailed derivation of this
diagrammatic language and its rules for the calculation of
diagrams, we refer to Refs. 45, 46, 49, and 50. Not described
in these references is the inclusion of the counting field �,
the Fourier-conjugated variable of the transferred charge N.
It is introduced at each junction by replacing the tunnel ma-
trix elements in the Hamiltonian as tr→ tre

�i�r/2 with �L=
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−�R=� /2, where the positive �negative� sign is taken for
vertices on the upper �lower� branch of the Keldysh contour.
The counting field is thus attached to both interfaces in such
a way that only electrons passing the entire system contribute
to the statistics.

The cumulant generating function is defined as

S��,t0� = ln� �
N=−�

�

ei�NP�N,t0�� , �4�

where P�N , t0�=�p
�N , t0� labels the probability that N

electrons have passed the system and p
 are the diagonal

elements of the systems density matrix, i.e., the occupation
probability of state ��. The cumulants can be obtained
by taking derivatives with respect to the counting field �n
= �−i�n�en / t0��n /��nS���. The density matrix elements p

� are
the solutions of the master equation Eq. �3� in the steady
state. In order to solve Eq. �3�, we first Fourier-transform the
equation with respect to N, thereby introducing the counting
field � and second perform a Laplace transform in time. We
obtain the cumulant-generating function by following the
same steps as in Ref. 12, in which, however, only general-
ized master equations for a diagonal density matrix were
considered. This is, e.g., sufficient to describe Aharonov-
Bohm interferometers that contain one quantum dot.51 In or-
der to describe a double-dot Aharonov-Bohm interferometer,
however, we need to extend the approach of Ref. 12 to in-
clude also nondiagonal density-matrix elements.

It turns out that this extension is quite straightforward. All
the formal steps of Ref. 12 remain the same. The only dif-
ference is that when writing the generalized master equation

in a matrix notation, off-diagonal matrix elements need to be
taken into account as well, i.e., �̇���=W��� ·����, where
�= �p1

1 , p2

2 , . . . , pn

n , p�1

�1 , p�2

�2 , . . . , p�m

�m� first collects all diag-
onal and then all off-diagonal matrix elements of the density
matrix �the indices i ,�i ,�i label the system states.�. As a
consequence, we need to redefine the vector eT

= �1, . . . ,1 ,0 , . . . ,0�, which is needed to compute P�N�
=eT ·��N�. The central result of Ref. 12 is still valid, namely,
Eq. �5� and its generalization to non-Markovian orders. It
relates the cumulant generating function to the eigenvalue
���� of the kernel W���, whose real part has the smallest
absolute �negative� value. The only modification is that the
matrix W��� is enlarged since it allows for transitions from
and to off-diagonal states as well. In lowest order in the
tunnel-coupling strength, the cumulant generating function is
simply given by

S��,t0� = t0���� . �5�

In many cases the matrix W is too large and complex to
obtain its eigenvalues analytically. In such situations, one can
nevertheless obtain all the cumulants recursively. This has
been demonstrated for master equations similar to Eq. �3� by
Flindt et al.13 This technique can be applied to systems with
nondiagonal density-matrix elements without modification.
Details and analytic forms for the first cumulants can be
found in the Appendix and the literature.

We present the master equation for the case of degenerate
dot levels �i.e., level splitting ��=0� using an intuitive nota-
tion distinguishing between occupation probabilities p
= �p0 , p1 , pS , pT� and isospin I �in the above notation �
= �p ,I��,

d

dt
p = �

r=L,R
	r�

− 4fr e−i�r�1 − fr� 0 0

ei�r4fr − �1 + fr� e−i�r2�1 − fr� e−i�r2�1 − fr�

0 ei�r
1

2
fr − 2�1 − fr� 0

0 ei�r
3

2
fr 0 − 2�1 − fr�

� · p + 	r�
e−i�r2�1 − fr�
− 2�1 − 2fr�

ei�rf r

− ei�r3fr

�I · nr, �6�

d

dt
I = �

r=L,R
	r�ei�r2frp0 + �1 − fr�p1 + e−i�r�1 − fr�pS − e−i�r�1 − fr�pT�nr − 	r�1 + fr�I . �7�

In the following we will only be interested in the shot-
noise regime eV�kBT. In particular, we consider the situa-
tion that the dot levels lie inside the energy window defined
by the Fermi levels of the leads so that fL���=1 and fR���
=0.

IV. FLUX-DEPENDENT COUNTING STATISTICS

To illustrate the origin of the singlet-triplet imbalance dis-
cussed in Ref. 45, we transform the basis of the double-dot

states with a transformation matrix S such that S�= �p0 ,
p1

2

+I ·nL , pS ,
p1

2 −I ·nL , pT ,I · �nz�nL� , Iz�. The first three ele-
ments correspond to the double dot being empty �0�, singly
occupied in the symmetric state �+ �L= �ei�/4�� ,0�
+e−i�/4�0,��� /�2 that is reached by tunneling in from the left
lead, and doubly occupied with a spin singlet �S�. In the
following this set of states is referred to as the + subspace,
named after the isospin in the singly-occupied state. This
basis choice is motivated by the fact that for flux �=2�m,
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the + subspace is not connected by tunneling to the remain-
ing states. These other states can again be divided into two
uncoupled subspaces. The first one consists of single occu-
pation in the state �−�R= �e−i�/4�� ,0�−ei�/4�0,��� /�2 �this be-
comes the antisymmetric state for �=2�m�, and double oc-
cupation with a spin triplet �T�. The set of these two states is
referred to as the − subspace. The remaining components of
the isospin that are orthogonal to nL are called the � sub-

space. In the case �=0 these states are not populated and the
system dynamics is governed entirely by the + and − sub-
spaces.

The basis change includes no approximation and contains
the same information found in Eq. �6� since states and
rates were transformed together. In the new basis the
master equation assumes block-diagonal form for �=0
as follows:

SWS−1

=�
− 4	L ei�/22GR

+ 0 ei�/22GR
− 0 ei�/22	R sin

�

2
0

ei�/24GL
+ − 	L − GL

− − 2GR
+ ei�/22GR

+ 0 ei�/22GR
− − 	 sin

�

2
0

0 ei�/2GL
+ − 2	R ei�/2GL

− 0 − ei�/2	L sin
�

2
0

ei�/24GL
− 0 ei�/22GR

− − 	L − GL
+ − GR

− ei�/22GR
+ − 	 sin

�

2
0

0 ei�/23GL
− 0 ei�/23GL

+ − 2	R ei�/23	L sin
�

2
0

− ei�/24	L sin
�

2
−

1

2
	 sin

�

2
ei�/2	R sin

�

2
−

1

2
	 sin

�

2
− ei�/2	R sin

�

2
− 2	L − 	R 0

0 0 0 0 0 0 − 2	L − 	R

� ,

�8�

where the following definitions were used: Gr
�

=	r
1
2 �1�cos�

2 �, 	=	L+	R, and 	�=2	L+	R. Note that for
�=0 the matrix assumes block-diagonal form since Gr

+

→	r and Gr
−→0.

It turns out that for zero flux the master equation assumes
block-diagonal form and the + and − subspaces decouple.
The + subspace is found in the upper-left 3�3 block. In
presence of a flux it is coupled by tunneling, i.e., a change in
the charge state, to the 2�2-dimensional − subspace located
in the middle. This coupling cannot be described simply by a
rate �+↔−. Instead there are six possible transition paths
which occur with four different rates. The paths and rates can
be read off from the 2�3 and 3�2 blocks in Eq. �8� that
contain factors Gr

�. The two rightmost columns and two low-
est lines of Eq. �8� describe the intermediate occupation of
the � subspace occurring for ��2�m.

As for �=2�m the system decomposes into two un-
coupled subsystems, it is no longer possible to calculate its
counting statistics as described in Ref. 12. There are two
independent stationary solutions of the master Eq. �3�—one
for each subspace. This means that the �long-time� counting
statistics would unphysically depend on the initial condition.
In realistic systems some kind of coupling would always be
present, lifting the degeneracy. Thus we study only small but

finite values of the flux ��2�m so that the full counting
statistics is well defined.

A. Channel exclusion for �=2�m

The separation of the system’s Hilbert space into two
separate subspaces has consequences for the transport statis-
tics: As discussed in Sec. I, systems with several states dif-
fering in average current exhibit bunching. The larger the
current difference is, the more enhanced is the noise. As the
rate with which the system switches between the states is
decreased, the noise is expected to be enhanced further. In
the system discussed, the coupling can be decreased to zero
by tuning the magnetic flux to �=2�m. In this case, the
subspaces decouple and all normalized cumulants diverge as
the effective charge goes to infinity �see Fig. 2�.52 We em-
phasize that the divergence of the normalized cumulants is
not caused by a vanishing current, whose dependence on flux
is approximately cosinelike �see Fig. 3�.

To specify the picture outlined above we analyze the
properties of the subspaces separately. For this purpose we
calculate the cumulant generating functions associated with
the 3�3 and 2�2 subspaces for singlet and triplet, respec-
tively. These are defined as the eigenvalues of the corre-
sponding submatrices of Eq. �8�.
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The cumulant generating function for the − subspace, Eq.
�9�, is that of a two-state system,

S− = −
3	L + 2	R

2
�1 −�1 +

4�3	L��2	R�
�3	L + 2	R�2 �ei� − 1�� .

�9�

The transition rates are 3	L for filling and 2	R for emptying
the double dot. This can be understood by counting the pos-
sible realizations of each state: If the dot is in a triplet state,
taking away either of the two electrons results in single oc-
cupation. On the other hand, starting from a singly-occupied
state there are three triplets which can be accessed by tun-
neling into the system.

The cumulant generating function for the + subspace is
too complex to be shown here. It describes a three-state sys-
tem, with transition rates as can be read off from Eq. �8�.
Below, we will give compact analytic expressions in the limit
of very asymmetric tunnel couplings to the left and right
leads.

The complex internal dynamics distinguish our system
from others in the literature in two ways: First, the two states
are not just differing in current, but are each characterized by
their own distribution function. Second, the transitions be-
tween the subsystems cannot just be described by simple
rates 	+↔−. Instead there are six possible transition paths
which occur with four different rates. These paths and rates
can be found in the 2�3 and 3�2 submatrices in Eq. �8�.

Our work also differs from other studies of the counting
statistics related to singlet and triplet states53,54 in so far as
these studied the different statistics of two-particle states
propagating along a device, while in our case only a single
particle propagates at a time.

1. Asymmetric tunnel coupling

In Fig. 4, we show the second, third, and fourth normal-
ized cumulant for asymmetric tunnel coupling to source and
drain, parametrized by the asymmetry parameter a= �	L
−	R� /	, where 	=	L+	R denotes the total coupling. For
a→−1, the bottleneck for transport is the tunnel barrier be-
tween source electrode and double dot. We find that the
width of the divergence as a function of the Aharonov-Bohm
flux is slightly increased. Furthermore, the divergence of the
third cumulant has changed its sign as compared to the case
of symmetric coupling. The cumulant generating functions
for the + and − subspace at �=2�m,

S+�a→−1 = 4	L�ei� − 1� − 3
2	�a + 1�2ei��ei� − 1� , �10�

S−�a→−1 = 3	L�ei� − 1� − 9
8	�a + 1�2ei��ei� − 1� , �11�

become Poissonian for a→−1, with different tunneling rates
for the + and − subspace. In addition, the probability to find
the double dot in a + subspace is higher than that for the −
subspace, P+= p0+ p++ pS= 4

5 +O�a1�, and P−= p−+ pT= 1
5

+O�a1�. These probabilities were obtained from the prob-
abilities calculated in the nondegenerate case ��0 and then
taking the limit �→0.

In the opposite limit, a→1, the width of the divergence is
strongly suppressed. In this case, tunneling out of the double
dot to the drain electrode defines the bottleneck of transport.
At first glance a stronger bunching may be expected since
with decreasing tunnel coupling to the drain the coupling
between the + and − subspaces is reduced. However, it turns
out that in the limit a→ +1, the cumulant-generating func-
tions

S+�a→1 = 2	R�ei� − 1� − 1
4	�a − 1�3e2i��ei� − 1� , �12�

S−�a→1 = 2	R�ei� − 1� − 1
3	�a − 1�2ei��ei� − 1� �13�

become identical. Therefore, the transport statistics is the
same for both subspaces, and bunching does not appear any-
more. Figure 5 shows the current I+�I−� under the condition

0 π 2ππ/2 3π/2
AB-Phase φ

-1

0

1

2

3

κ n/κ
1

[e
n-

1 ]

n=2
n=3
n=4

FIG. 2. �Color online� The normalized nth cumulants �n /�1 di-
verge for �→2�m in a symmetric system �	L=	R�, due to the
competition of two channels belonging to different system states.
The width of the divergence is governed by the relaxation rate
between these two states.
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FIG. 3. The current through the double-dot system is subject to
Aharonov-Bohm oscillations. These are almost cosinelike so that
the current remains finite for �=0.
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FIG. 4. �Color online� The normalized nth cumulants �n /�1 of
the nonsymmetric system diverge �left plot: a= �	L−	R� / �	L+	R�
=−0.9, right plot: a= +0.9�. The width of the divergence is slightly
enhanced a→−1 but strongly reduced for a→ +1.
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that the system is in the +�−� subspace as a function of the
asymmetry. These currents are obtained from the cumulant-
generating functions for each subspace. They become equal
for a→ +1.

2. Influence of relaxation

In experiments interaction with the environment can be
expected to induce various relaxation mechanisms. Relax-
ation of the isospin, mediated by electric interactions, will be
of particular importance. We model it by introducing a relax-
ation term with rate �I in the master equation Eq. �6� that
reduces the isospin isotropically as follows:

� d

dt
I�

rel
= − �II . �14�

The effect of this relaxation is primarily a reduction in the
visibility of the AB signal due to the electrons loosing their
coherence. Furthermore, it leads to an effective coupling of
the + and − subspaces. Correspondingly the bunching effect
is weakened, resulting in the cumulants assuming finite val-
ues also for �=2�m �see Fig. 6�. The figure shows the situ-
ation for �I=	 /10. For sufficiently fast relaxation all cumu-
lants become sub-Poissonian, but as can be seen from the
figure, the higher the moment, the faster is the required re-
laxation rate.

Another relaxation mechanism may be given by spin-flip
processes converting singlets into triplets and vice versa.
Since we summarized all the triplet occupations in pT, terms
have to be added to the master equation in the following
ways:

� d

dt
pS�

rel
= − �STpS + 3�STpT, �15�

� d

dt
pT�

rel
= + �STpS − 3�STpT. �16�

The factor of three is required to take into account that the
triplet probability corresponds to three states, while there is
only one singlet.

The + and − subspaces are now directly coupled and the
divergencies vanish more rapidly as a function of the relax-
ation rate than in the case of isospin relaxation �Fig. 7�.
However, since such a relaxation is mediated magnetically, it
can be expected to be much slower than isospin relaxation.

A third way of coupling the + and − subspaces is not
related to relaxation. As can be seen from the master equa-
tion, Eq. �3�, a detuning of the energy levels ��=�u−�d gives
rise to additional terms. It turns out that for small detuning,
���	, this results in precession of the isospin about the axis
n= �0,0 ,1�,

� d

dt
I�

prec
= �� n � I . �17�

Since three spatial directions �nL, nR, and n� appear in the
master equation, the symmetry of the flux dependence about
�=� is lost. In other words, the statistics depends on the
direction of transport even in the case of symmetric coupling
	L=	R. A similar effect was predicted for a quantum dot
with three ferromagnetic leads.55 For reasonably large values
of the detuning, ��=	 /3, enhancement of the moments
clearly persists �Fig. 8�.

B. Super-Poissonian statistics for �=(2n+1)�

Figure 4 reveals that the statistics for �= �2n+1�� are
also peculiar for a→−1: The noise and the third normalized
cumulant are enhanced beyond the Poissonian value, while

-1 0 1
Asymmetry a=(Γ

L
-Γ

R
)/(Γ

L
+Γ

R
)

0,4

0,5

0,6
I +

,-
/(

I +
+

I -)
+ subspace
- subspace

FIG. 5. �Color online� For stronger coupling to the drain �a
�0� the current associated with the + subspace is larger than that
for the − subspace. Additionally, the occupations of the subspaces
differ. This results in super-Poissonian statistics. For a→1 both
currents and occupations are equal. This yields Poissonian statistics.
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FIG. 6. �Color online� Normalized cumulants in the presence of
isotropic isospin relaxation �rate �I=	 /10�. The divergent cumu-
lants are suppressed: while the Fano-factor is sub-Poissonian for the
relaxation rate shown, higher cumulants still show super-Poissonian
behavior.
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FIG. 7. �Color online� Normalized cumulants in the presence of
singlet-triplet relaxation �rate �ST=	 /200�. The influence of the
S-T relaxation is much stronger than that of the isospin relaxation.
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the fourth normalized cumulant remains negative. The en-
hanced noise can be understood by studying the states which
predominantly contribute to transport. They can be read off
from the master equation Eq. �3� and are summarized in Fig.
9.

Due to the strongly different coupling strengths, filling the
dot is much slower than emptying. Therefore one could ex-
pect that the double dot is predominantly empty, while single
and double occupations are strongly suppressed. However,
the isospin of an electron originating from the left lead has
no overlap with the isospin polarization of the right lead. The
direct transition �+ �L→ �0� is therefore forbidden and single
occupation turns out to be more likely than an empty dot, as
can be seen from the stationary occupation probabilities for
a�−1,

p �
1

5�
1 − �a + 1�

4

a + 1

0
� + O��a + 1�2� , �18�

I ��
0

−
2

5
+

a + 1

5

0
� + O��a + 1�2� , �19�

with the isospin being parallel to nL. Due to the fact that
filling the dot with a single electron occurs with rate 4	L and
adding a second electron only with rate 	L, the singly occu-
pied state �+ �L is, in lowest order in �a+1�, four times more
likely than an empty dot. Occupation of the triplet is even
rarer than singlet occupation: it starts in order �a+1�2 be-
cause it can only be reached via singlet occupation and sub-
sequent decay to the state �−�R.

It is eminent from the flowchart Fig. 9 that there are sev-
eral distinct cycles through which electrons are transported
from left to right: the transitions �+ �L↔ �S� and �0�→ �+ �L
→ �S�→ �−�R and then back to �0�, or several subcycles via
�T�. As these cycles transfer electrons at different mean cur-
rents and with different statistics, it is clear that a compli-
cated telegraph effect will lead to increased noise. In contrast

to the channel exclusion described in Secs. IV A 1 and
IV A 2 this effect is not related to separated Hilbert spaces.

V. IMPORTANCE OF SPIN

We would like to remark that the divergence of the nor-
malized cumulants for �=2�m depends crucially on the in-
clusion of spin in the description of the system. The literature
knows a number of examples where finite noise was found in
similar, although not equal, double-dot systems with spinless
electrons.39–41 There is also one example where infinite noise
is predicted, although spin was not included.36 At the end
of this section we will discuss the relation to the present
model.

Neglecting spin in our model reduces the dimensionality
of the Hilbert space to four �instead of nine� since the dis-
tinction between singlet and triplet becomes impossible. In-
stead there is only one doubly-occupied state, which is suf-
ficiently described by its occupation probability p2. There are
thus in principle 16 independent density-matrix elements �in-
stead of 81� of which only six �instead of seven� are inde-
pendent. Again, we arrange the density-matrix elements in a
vector �= �p0 , p1 , p2 ,I� so that the master equation can be
written in matrix form. Transforming to a new basis S�
= �p0 , p1 /2+I ·nL , p2 , p1 /2−I ·nL ,I · �nz�nL� , Iz� similar to
the above, the kernel of the spinless system Wsl again as-
sumes block-diagonal form for �=2�m as follows:

FIG. 9. Internal system dynamics for flux �=� and strong cou-
pling to the drain a→−1. The double lines denote transitions much
faster �with rate 2	R� than the single lines �with rates �	L�.
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FIG. 10. �Color online� The normalized nth cumulants �n /�1

show no divergence for �=2�m if spin is neglected. Instead they
assume the values expected for a noninteracting two-level system.
At �= �2m+1�� the statistics becomes Poissonian due to an
isospin-blockade effect.
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FIG. 8. �Color online� Normalized cumulants in the presence of
a finite level detuning ��=1 /3	. Symmetry of the flux dependence
about �=� is lost, but enhancement of the cumulants are still
clearly visible.
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SWslS
−1 =�

− 2	L GR
+ 0 GR

− ei�/22	R sin
�

2
0

GL
+ − GL

− − GR
+ GR

− 0 	 sin
�

2
0

0 GL
− − 2	R GL

+ ei�/22	R sin
�

2
0

GL
− 0 GR

+ − GL
+ − GR

− − 	 sin
�

2
0

− ei�/2	L sin
�

2
−

1

2
	 sin

�

2
− ei�/2	R sin

�

2
−

1

2
	 sin

�

2
− 	L − 	R 0

0 0 0 0 0 − 	L − 	R

� , �20�

where, as above, Gr
�=ei�/2	r�1�cos�

2 � was defined.
The block structure can be understood by realizing that

for an AB phase �=2�m, charging the empty double dot �0�
from the source always results in the symmetric state �+ �
= ��1,0�+ �0,1�� /�2. From this state the electron may leave
to the drain, resulting again in �0�. In contrast to the spinful
case, the symmetric state �+ � cannot be charged with a sec-
ond electron so that �0� and �+ � constitute a decoupled set of
states, whose motion is described by the upper-left block of
Eq. �20�. On the other hand, the doubly-occupied state �1,1�
may loose one electron to the drain, resulting in the antisym-
metric combination �−�= ��1,0�− �0,1�� /�2, which can also
be charged again from the source, but cannot be discharged
to the drain. The two states ��−� , �1,1�� therefore also form a
decoupled set, which is described by the middle block of Eq.
�20�. The remaining components of the isospin are unoccu-
pied.

In contrast to the situation with spinful electrons the sta-
tistics of the two subspaces are the same, regardless of the
coupling strengths. This is owed to the fact that both sub-
spaces are two dimensional and describe a single level, the
statistics of which is symmetric in source and drain coupling.
Correspondingly the statistics of the spinless model becomes
that of two independent noninteracting levels8,56 for �
=2�m �see Fig. 10�.

The figure also shows that at �= �2m+1�� the statistics
becomes Poissonian. This is due to an isospin blockade:
Adding one electron to the empty system results in the state
��1,0�− i�0,1�� /�2. This state cannot decay to the drain. On
the other hand, the doubly-occupied state may loose one
electron, resulting in the combination ��1,0�+ i�0,1�� /�2,
which in turn cannot be refilled from the source. As a con-
sequence, the system is trapped in the singly-occupied state
and transport events become increasingly rare as the flux
approaches 2�m, resulting in Poissonian statistics.

In summary, no super-Poissonian noise is predicted for
any value of the magnetic flux when spin is neglected. In
Ref. 36 diverging noise was also reported for spinless elec-
trons as the flux approaches multiples of the flux quantum,
�=2�m. There a double-dot Aharonov-Bohm interferometer
with nondegenerate energy levels �level splitting ��� was
considered, with strong intradot interaction, so that double

occupation is forbidden and a charge-blockade mechanism
can interrupt transport. It was pointed out that it is then im-
portant to perform the limit correctly as the system ap-
proaches the degeneracy point, i.e., taking first �→0 and
then ��→0. Since we do not assume Coulomb interaction
between the dots a charge-blockade mechanism is not effec-
tive and the order of limits is uncritical.

The spinless double-dot system with degenerate levels
discussed here can be mapped onto a noninteracting
quantum-dot spin-valve,57 with perfect lead polarization. The
statistics of quantum-dot spin valves have been analyzed in
more general contexts, both without and with Coulomb
interaction.58

VI. CONCLUSION

We have analyzed the full counting statistics of electronic
transport through an Aharonov-Bohm interferometer with
two quantum dots embedded in its arms in the shot-noise
regime. We found that for values of the Aharonov-Bohm flux
that are integer multiples of the flux quantum, the second and
higher cumulants diverge. This divergence is related to a
separation of the Hilbert space of the double dot into discon-
nected subspaces that contain the spin singlet and triplet
states for double occupancy, respectively. As the two sub-
spaces have different transport statistics, the system exhibits
electron bunching that results in strongly super-Poissonian
statistics. The coupling between the two subspaces, and
therefore also the appearance of the divergence, is tunable by
the Aharonov-Bohm flux. The inclusion of spin in the de-
scription of the system has been shown to be crucial for the
occurrence of diverging moments. Furthermore, we dis-
cussed how the divergence is cut off by the influence of an
environment that relaxes either the isospin or the spin coher-
ence.
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APPENDIX: PERTURBATIVE EXPANSION FOR LOWER-
ORDER CUMULANTS

As mentioned in Sec. IV we make use of a recursive
scheme to calculate the cumulants based on a master equa-
tion, which was developed by Flindt et al.13 It is based on the
assumption that the system’s behavior is dominated by a
single pole of the kernel W���=W�0�+W���. The cumulant
generating function is then found to be

S��� = 
0�W����1 + R���W����−1�0� , �A1�

where 
0� and �0� are the left and right null vectors of W�0�
and R��� is the pseudoinverse R���=Q�W���−S����−1Q,
with Q=1− �0�
0�.

The cumulants can be obtained from Eq. �A1� using
Brillouin-Wigner perturbation theory in �. This requires

knowledge of the derivatives of the kernel. The first two
cumulants �current and noise� are

�1 =
1

i

0�W��0� �A2�

�2 =
1

i2 
0�W� − 2W�RW��0� , �A3�

where the prime denotes a derivative with respect to the
counting field �.

The multiplication with left and right eigenvectors auto-
matically picks out the correct eigenvalue. In our system we
find the left null vector to be 
0�= �1,1 ,1 ,1 ,0 ,0 ,0� so that it
also automatically takes care of getting rid of the unneeded
off-diagonal elements mentioned above.
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